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Abstract

On the basis of the Bernoulli–Euler beam theory, the properties of free transverse vibration and buckling of a double-

beam system under compressive axial loading are investigated in this paper. It is assumed that the two beams of the system

are simply supported and continuously joined by a Winkler elastic layer. Explicit expressions are derived for the natural

frequencies and the associated amplitude ratios of the two beams, and the analytical solution of the critical buckling load is

obtained. The influences of the compressive axial loading on the responses of the double-beam system are discussed. It is

shown that the critical buckling load of the system is related to the axial compression ratio of the two beams and the

Winkler elastic layer, and the properties of free transverse vibration of the system greatly depend on the axial

compressions.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Beam-type structures are broadly adopted in civil, mechanical, and aerospace engineering. Therefore, the
vibration and buckling problems of single beam and beam systems are of considerable practical interest and
have wide application in engineering practice. In the past few decades, much attention has been drawn to the
vibration and buckling of single one-dimensional continuous systems such as beams [1–8].

An important technological extension of the concept of the single beam is that of the double-beam system
such as double-beam cranes, double-beam spectrometers, double-beam interferometers, etc. As a complex
continuous system consisting of two one-dimensional solids joined by elastic medium, the elastically connected
double-beam system has attracted great interest and its different aspects of dynamics have been investigated
[9–14]. Seelig and Hoppmann II [15] presented the development and solution of the differential equations
of motion of an elastically connected double-beam system subjected to an impulsive load. Rao [16] considered
the free response of Timoshenko beam systems. Oniszczuk [17] discussed free transverse vibrations of two
simply supported Bernoulli–Euler beams connected by a Winkler elastic layer. However, without considering
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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the effect of axial loading these studies are limited to the cases with negligible axial loads. As a matter of fact,
the phenomenon of transverse vibration of beams under axial compression often occurs in the aerospace, civil,
and mechanical industries. For instance, in the design of certain spacecraft structural components it sometimes
becomes necessary to determine the natural frequencies and mode shapes of beam-type components, which are
in a state of preload or prestress. In order to understand this phenomenon, some studies regarding single beam
systems with axial loads has been conducted in the past [18–23].

As an extension of the work of Oniszczuk [17], which does not consider the axial force, the free vibration and
buckling of a double-beam system under axial loading are studied in the present paper. It is assumed that the system
under consideration is composed of two parallel, slender, prismatic, and homogeneous beams continuously joined
by a Winkler elastic layer. Both beams have the same length. It is also supposed that the buckling can only occur in
the plane where the double-beam system lies. As the general vibration and buckling analysis of an elastically
connected double-beam system is quite laborious due to the large variety of possible combinations of the boundary
conditions, the discussions are limited only to the case of simply supported beams. The explicit expressions are
derived for natural frequencies and associated amplitude ratios of the two beams, and the analytical solution of the
critical buckling load is obtained. The effects of axial loading on the responses of the system are investigated.

2. Formulation

The Bernoulli–Euler beam theory is adopted in this study. This theory is on the basis of the assumption that
plane cross-sections of a beam remain plane during flexure and that the radius of curvature of a bent beam is
large compared with the beam’s depth. It is valid only if the ratio of the depth to the length of the beam is
small and the beams are excited at low frequencies; besides, both the rotary inertia and shear deformation
should be negligible. Following the Bernoulli–Euler beam theory, the general equation for transverse
vibrations of an elastic beam under axial compression and distributed transverse pressure is expressed by [1,3]

EIwIV þ rA €wþ Fw00 ¼ pðxÞ (1)

where p(x) is the distributed transverse pressure per unit axial length which is positive when it acts downward,
F the compressive axial load which is positive in compression, w the transverse beam deflection which is
positive if downward, I and A the moment of inertia of the beam cross-section and the cross-sectional area of
the beam, and E and r, Young’s modulus and the mass density. Thus, EI denotes the bending stiffness of the
beam, and rA represents the mass density per unit axial length. In addition, we define

w0 ¼
qw

qx
; _w ¼

qw

qt
(2)

where x is the axial coordinate and t the time.
Eq. (1) can be applied to each of the beams of the elastically connected double-beam system shown in Fig. 1.

Assuming that the two beams have the same effective material constants, it follows from Eq. (1) that

EI1w
IV
1 þ rA1 €w1 þ F1w

00
1 þ Kðw1 � w2Þ ¼ 0 (3)

EI2w
IV
2 þ rA2 €w2 þ F2w

00
2 þ Kðw2 � w1Þ ¼ 0 (4)
F1 F1

F2 F2

l

K

Fig. 1. Geometry of an elastically connected double-beam system.
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where K is the stiffness modulus of a Winkler elastic layer. As can be seen, these two differential equations
describe the free transverse vibrations of double-beam system under compressive axial load. When the effect of
axial load is ignored, Eqs. (3) and (4) reduce to those vibrational equations given by Oniszczuk [17].

3. Solution of the problem

Suppose that both beams have the same length l of the elastically connected double-beam system and their
ends are simply supported, the boundary conditions are given by

w1ð0; tÞ ¼ w1ðl; tÞ ¼ 0 (5a)

w001ð0; tÞ ¼ w001ðl; tÞ ¼ 0 (5b)

and

w2ð0; tÞ ¼ w2ðl; tÞ ¼ 0 (6a)

w002ð0; tÞ ¼ w002ðl; tÞ ¼ 0 (6b)

and the initial conditions are assumed as follows:

w1ðx; 0Þ ¼ w10ðxÞ (7a)

w2ðx; 0Þ ¼ w20ðxÞ (7b)

and

_w1ðx; 0Þ ¼ v10ðxÞ (8a)

_w2ðx; 0Þ ¼ v20ðxÞ (8b)

The homogeneous partial differential equations (3) and (4) with the governing boundary conditions (5)
and (6) can be solved by the Bernoulli–Fourier method assuming the solutions in the form

w1ðx; tÞ ¼
X1
n¼1

X nðxÞT1nðtÞ (9)

w2ðx; tÞ ¼
X1
n¼1

X nðxÞT2nðtÞ (10)

where T1n(t) and T2n(t) denote the unknown time functions, and Xn(x) is the known mode shape function for
simply supported single beam, which is defined as

X nðxÞ ¼ sinðknxÞ (11)

with

kn ¼
np
l
; n ¼ 1; 2; 3; . . . (12)

Introduction of Eqs. (9) and (10) into Eqs. (3) and (4) yields

X1
n¼1

ðrA1
€T1n þ ðEI1k

4
n þ K � F1k2

nÞT1n � KT2nÞX n ¼ 0 (13)

X1
n¼1

ðrA2
€T2n þ ðEI2k

4
n þ K � F2k2

nÞT2n � KT1nÞX n ¼ 0 (14)

It follows from Eqs. (13) and (14) that a set of ordinary differential equations for the unknown time
functions can be expressed as

€T1n þ ðN1 � Z1F1ÞT1n �H1T2n ¼ 0 (15)
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€T2n þ ðN2 � Z2F2ÞT2n �H2T1n ¼ 0 (16)

with

N1 ¼
EI1k4

n

rA1
þH1; N2 ¼

EI2k
4
n

rA2
þH2 (17)

Z1 ¼
k2

n

rA1
; Z2 ¼

k2
n

rA2
(18)

H1 ¼
K

rA1
; H2 ¼

K

rA2
(19)

The solutions of Eqs. (15) and (16) can be obtained by

T1nðtÞ ¼ Cne
jont; T2nðtÞ ¼ Dne

jont; j ¼
ffiffiffiffiffiffiffi
�1
p

(20)

where on denotes the natural frequency of the double-beam system, and Cn and Dn represent the amplitude
coefficients of the two beams, respectively. Substituting Eq. (20) into Eqs. (15) and (16), we obtain

ðN1 � Z1F 1 � o2
nÞCn �H1Dn ¼ 0 (21)

ðN2 � Z2F 2 � o2
nÞDn �H2Cn ¼ 0 (22)

When the determinant of the coefficients in Eqs. (21) and (22) vanishes, non-trivial solutions for the
constants Cn and Dn can be obtained, which yields the following frequency (characteristic) equation:

o4
n � ðN1 þN2 � Z1F 1 � Z2F 2Þo2

n þ ðN1 � Z1F1ÞðN2 � Z2F2Þ �H1H2 ¼ 0 (23)

It can be observed that the discriminant of this biquadratic algebraic equation is positive

D ¼ ðN1 �N2 � Z1F1 þ Z2F2Þ
2
þ 4H1H240 (24)

Then from the characteristic Eq. (23), we obtain

o2
nI ¼

1
2
ðN1 þN2 � Z1F 1 � Z2F2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 �N2 � Z1F 1 þ Z2F 2Þ

2
þ 4H1H2

q
Þ (25)

o2
nII ¼

1
2
ðN1 þN2 � Z1F 1 � Z2F 2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 �N2 � Z1F 1 þ Z2F 2Þ

2
þ 4H1H2

q
Þ (26)

where onI is the lower natural frequency of the system, and onII is the higher natural frequency. For each of
the natural frequencies, the associated amplitude ratio of vibration modes of the two beams is given by

an ¼
Cn

Dn

¼
H1

N1 � Z1F 1 � o2
n

¼
N2 � Z2F2 � o2

n

H2
(27)

It is seen that without the axial load the results for onI, onII, and anI obtained by Oniszczuk [17] are recovered.
Introducing Eqs. (25) and (26) into Eq. (27), respectively, we have

anI ¼
1

2H2
ðN2 �N1 þ Z1F1 � Z2F2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 �N2 � Z1F 1 þ Z2F2Þ

2
þ 4H1H2

q
Þ (28)

anII ¼
1

2H2
ðN2 �N1 þ Z1F1 � Z2F2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 �N2 � Z1F1 þ Z2F2Þ

2
þ 4H1H2

q
Þ (29)

As can be seen, the amplitude ratio anI corresponding to the lower natural frequency onl is always positive,
which indicates that the two beams execute synchronous vibrations, while anII corresponding to the higher
frequency onl is always negative, which indicates that the two beams execute asynchronous vibrations.

From the above analysis we know that solutions (20) can be rewritten as

T1nðtÞ ¼ C1ne
jonIt þ C2ne

�jonIt þ C3ne
jonIIt þ C4ne

�jonIIt (30)
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T2nðtÞ ¼ D1ne
jonIt þD2ne

�jonIt þD3ne
jonIIt þD4ne

�jonIIt (31)

Substitution of the trigonometric functions into the above two equations gives

T1nðtÞ ¼
XII
i¼I

Ani sinðonitÞ þ Bni cosðonitÞð Þ (32)

T2nðtÞ ¼
XII
i¼I

aniðAni sinðonitÞ þ Bni cosðonitÞÞ (33)

where Ani and Bni (i ¼ I, II) are unknown constants which will be determined in the following. Then the
transverse vibrations of the double-beam system under axial compressions can be described by

w1ðx; tÞ ¼
X1
n¼1

sinðknxÞ
XII
i¼I

Ani sinðonitÞ þ Bni cosðonitÞð Þ (34)

w2ðx; tÞ ¼
X1
n¼1

sinðknxÞ
XII
i¼I

aniðAni sinðonitÞ þ Bni cosðonitÞÞ (35)

On the basis of the orthogonality property of mode shape functions, the unknown constants Ani and Bni can
be determined from the assumed initial conditions (7) and (8). To find the final form of the transverse
vibrations, the initial-value problem is solved. In this case, the classical orthogonality condition is applied:

Z l

0

X mX n dx ¼

Z l

0

sinðkmxÞ sinðknxÞdx ¼ bdmn (36)

with

b ¼
Z l

0

X 2
n dx ¼ 0:5l (37)

where dmn is the Kronecker delta. Introduction of Eqs. (34) and (35) into the initial conditions (7) and (8)
yields

w10 ¼
X1
n¼1

sinðknxÞ
XII
i¼I

Bni (38)

v10 ¼
X1
n¼1

sinðknxÞ
XII
i¼I

oniAni (39)

and

w20 ¼
X1
n¼1

sinðknxÞ
XII
i¼I

aniBni (40)

v20 ¼
X1
n¼1

sinðknxÞ
XII
i¼I

anioniAni (41)

Multiplying the above equations by the eigenfunction Xm, integrating them with respect to x from 0 to l, and
using the orthogonality condition (36), we have

b�1
Z l

0

w10 sinðknxÞdx ¼
XII
i¼I

Bni (42)
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b�1
Z l

0

v10 sinðknxÞdx ¼
XII
i¼I

oniAni (43)

b�1
Z l

0

w20 sinðknxÞdx ¼
XII
i¼I

aniBni (44)

b�1
Z l

0

v20 sinðknxÞdx ¼
XII
i¼I

anioniAni (45)

It follows from the above equations that

AnI ¼
1

bðanII � anIÞonI

Z l

0

ðanIIv10 � v20Þ sinðknxÞdx (46)

AnII ¼
1

bðanI � anIIÞonII

Z l

0

ðanIv10 � v20Þ sinðknxÞdx (47)

and

BnI ¼
1

bðanII � anIÞ

Z l

0

ðanIIw10 � w20Þ sinðknxÞdx (48)

BnII ¼
1

bðanI � anIIÞ

Z l

0

ðanIw10 � w20Þ sinðknxÞdx (49)

4. Application

For simplicity, in what follows we assume that the two beams of the elastically connected double-beam
system have the same bending stiffness and cross-sectional area. It follows from the assumption that

N1 ¼ N2 ¼ N ¼
EIk4

n

rA
þH (50)

Z1 ¼ Z2 ¼ Z ¼
k2

n

rA
(51)

H1 ¼ H2 ¼ H ¼
K

rA
(52)

The values for the parameters of the system which are used in the numerical calculations are given
as follows:

E ¼ 1� 1010 Nm�2; A ¼ 5� 10�2 m2; I ¼ 4� 10�4 m4

K0 ¼ 2� 105 Nm�2; l ¼ 10m; r ¼ 2� 103 kg�3

4.1. The axial buckling load

When the natural frequency of the system vanishes under the axial loading, the system begins to buckle.
Introduction of on ¼ 0 into Eq. (23) and combination of Eqs. (50), (51), and (52) give

ðN � ZF 1ÞðN � ZF 2Þ �H2 ¼ 0 (53)
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Without loss of generality, we assume

F2 ¼ wF1 (54)

with

0pwp1 (55)

Thus, Eq. (53) can be rewritten as

wZ2F2
1 � ðwþ 1ÞZNF 1 þN2 �H2 ¼ 0 (56)

It follows from Eq. (56) that the value of the buckling stress corresponding to vibration mode n can be
obtained by

ðF 1Þ
I
b ¼
ðwþ 1ÞZN þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwþ 1Þ2Z2N2 � 4wZ2ðN2 �H2Þ

q
2wZ2

(57)

and

ðF1Þ
II
b ¼
ðwþ 1ÞZN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwþ 1Þ2Z2N2 � 4wZ2ðN2 �H2Þ

q
2wZ2

(58)

As can be seen, the values of the buckling loads ðF1Þ
I
b and ðF1Þ

II
b are both positive and ðF 1Þ

I
b4ðF 1Þ

II
b .

Consequently, ðF1Þ
II
b is the critical buckling load corresponding to vibration mode n, namely

F cr
b ¼
ðwþ 1ÞZN �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwþ 1Þ2Z2N2 � 4wZ2ðN2 �H2Þ

q
2wZ2

(59)

Assuming w ¼ 0 and K ¼ 0, from Eq. (56) we obtain

Pn ¼ EI
n2p2

l2
(60)

which is the critical buckling load corresponding the number n of the Euler beam. By setting n equal to 1,
Eq. (60) reduces to

P ¼ EI
p2

l2
(61)

This load is known as the Euler load, which is the smallest load at which the beam ceases to be in stable
equilibrium.

It can be observed from Eq. (59) that the critical buckling load Fb
cr corresponding to vibration mode n

is dependent on the ratio w of the axial load F2 to F1. With the stiffness modulus K ¼ K0, the influence of w on
the critical buckling load Fb

cr is shown in Fig. 2. It is seen that the critical buckling load Fb
cr decreases with

increasing the axial compression ratio w, and the effect of the axial load ratio w is related to the vibration mode
n. The larger the vibration mode n, the more significant the effect of the axial compression ratio on the critical
buckling load. In addition, the critical buckling load Fb

cr is also dependent on the stiffness modulus K of the
Winkler elastic layer. With n ¼ 3, the effect of the Winkler elastic layer on the critical buckling load Fb

cr is
shown in Fig. 3. It is indicated that the critical buckling load Fb

cr increases with the increase of the stiffness
modulus K.

4.2. The effect of compressive axial loading

In the following, let us first illustrate the effect of compressive axial loading on the natural frequencies
of transverse vibration of the double-beam system. When the axial compressions are absent, it follows from
Eqs. (25), (26), (50)–(52) that

ðo0
nIÞ

2
¼ N �H (62)



ARTICLE IN PRESS

0.0

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

F
bcr

/P
n

n = 1

n = 2

n = 3

0.2 0.4 0.6 0.8 1.0
�
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Fig. 3. Effect of the stiffness modulus K of the Winkler elastic layer on the critical buckling load Fb
cr.
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ðo0
nIIÞ

2
¼ N þH (63)

where o0
nI and o0

nII, respectively, denote the lower and higher natural frequencies of the system without axial
loading. To examine the influence of compressive axial loading on the natural frequencies of transverse
vibration of the system, the results of natural frequencies under compressive axial loading and those without
axial loading are compared. It follows that

o2
nI ¼

1
2ð2N � Zð1þ wÞlF cr

b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2l2ðF cr

b Þ
2
ð1� wÞ2 þ 4H2

q
Þ (64)

o2
nII ¼

1
2

2N � Zð1þ wÞlF cr
b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2l2ðF cr

b Þ
2
ð1� wÞ2 þ 4H2

q� �
(65)

with

l ¼
F 1

F cr
b

(66)
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If we define

cI ¼
onI

o0
nI

; cII ¼
onII

o0
nII

(67)

with the vibration mode number n ¼ 3 the effects of compressive axial loading on the natural frequencies
of transverse vibration of the system represented by the ratios of cI and cII are shown in Figs. 4 and 5,
respectively. As can be seen, the ratios cI and cII diminish with increasing the axial compression, which
implies that the natural frequencies onI and onII become smaller when the axial loads get larger. Moreover, the
natural frequencies of the system become more sensitive to the compressive axial loading as the critical
buckling loads are approached. It can also be found from these two figures that the effect of compressive axial
loading on the lower natural frequency onI is almost independent of the axial compression ratio w whereas that
on the higher natural frequency onII is significantly dependent on it. The increase of the axial compression
ratio w brings about an evident reduction of the higher natural frequency onII.

In order to investigate the effect of compressive axial loading on the amplitude ratios of the two beams of
the system, the results for the amplitude ratios under compressive axial loading and those without axial
loading are compared. Without axial loading, it follows from Eqs. (28), (29), (50)–(52) that

a0nI ¼ 1; a0nII ¼ �1 (68)

where a0nI and a0nII denote the amplitude ratios of the two beams dependent on the lower and higher natural
frequencies of the system without axial loading, respectively. With compressive axial loading, we have

anI ¼
1

2H
lZð1� wÞF cr

b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lZð1� wÞF cr

b

� �2
þ 4H2

q� �
(69)

anII ¼
1

2H
lZð1� wÞF cr

b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lZð1� wÞF cr

b

� �2
þ 4H2

q� �
(70)

If we define

jI ¼
anI

a0nI
; jII ¼

anII

a0nII
(71)

with the vibration mode number n ¼ 3 the impacts of compressive axial loading on the amplitude ratios of the
two beams of the system represented by the parameters jI and jII are shown in Figs. 6 and 7, respectively.
From Fig. 6, it is seen that the ratio jI increases with increasing the axial compression and decreasing the axial
compression ratio w, which implies that the amplitude ratio anI dependent on the lower natural frequency onI
0.0
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0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

�

�
I

� = 0.2
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� = 0.8

Fig. 4. Relationship between ratio cI ¼ onI=o0
nI and dimensionless parameter l ¼ F1=F cr

b .



ARTICLE IN PRESS

0.0
0.4

0.6

0.8

1.0

1.2

�
II

0.2 0.4 0.6 0.8 1.0
�

� = 0.2

� = 0.4

� = 0.6

� = 0.8

Fig. 5. Relationship between ratio cII ¼ onII=o0
nII and dimensionless parameter l ¼ F1=F cr

b .

0.0
0

2

4

6

8

10

12

�
I

0.2 0.4 0.6 0.8 1.0
�

� = 0.8

� = 0.6

� = 0.4

� = 0.2

Fig. 6. Relationship between ratio jI ¼ anI=a0nI and dimensionless parameter l ¼ F1=F cr
b .

Y.Q. Zhang et al. / Journal of Sound and Vibration 318 (2008) 341–352350
become larger when the axial compression gets larger and the axial compression ratio w becomes smaller.
From Fig. 7, it is found that the ratio jII diminishes with the increase of the axial compression and the
decrease of the axial compression ratio w. In other words, the increase of the axial compression ratio w causes
the reduction of the absolute value of the amplitude ratio anII dependent on the higher natural frequency onII

as it is negative. Consequently, it is concluded that the influences of compressive axial loading on the
amplitude ratios anI and anII of the system become more significant with the increase of axial compression.

5. Conclusions

Based on the Bernoulli–Euler beam theory, the properties of free transverse vibration and buckling of an
elastically connected simply supported double-beam system under compressive axial loading are studied.
Using the classical Bernoulli–Fourier method, the solutions of the differential equations of motion for
the system are formulated. The analytical solution for the critical buckling load of the system is derived.
The explicit expressions are presented for natural frequencies and the associated amplitude ratios of the two
beams. The effects of compressive axial loading on the responses of the double-beam system are investigated.

It is concluded that the critical buckling load is influenced by the ratio w of the axial load F2 to F1 and the
Winkler elastic layer. It gets smaller with the increase of the ratio w and the diminishment of the stiffness
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modulus K of the Winkler elastic layer. In addition, it is found that the effects of compressive axial loading on
the natural frequencies of the system and associated amplitude ratios are more significant with the increase of
axial compression. Moreover, the effects of compressive axial loading on the higher natural frequency and the
amplitude ratios are significantly dependent on the axial compression ratio whereas that on the lower natural
frequency is almost independent of it.
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